ТЕХНОЛОГИЯ И РЕЗУЛЬТАТЫ ИСПЫТАНИЙ БЕСПЛАТФОРМЕННОГО АСТРОИНЕРЦИАЛЬНОГО БЛОКА ДЛЯ СИСТЕМ УПРАВЛЕНИЯ КОСМИЧЕСКИХ АППАРАТОВ*

Ю.М. Златкин¹, С.В. Олейник², Ю.А. Кузнецов³

НПП «Хартрон-Аркос», д. 1, ул. Академика Проскуры, г. Харьков, 61070, Украина E-mail: arkos@sovam.kharkov.ua, тел.: +38 (057) 719-17-83, факс: +38 (057) 315-43-49

В.Б. Успенский⁴, И.А. Багмут⁵

Национальный технический университет «Харьковский политехнический институт», д. 21, ул. Фрунзе, г. Харьков, 61002, Украина E-mail: v_usp@rambler.ru, тел.: +38 (057) 707-64-54, факс: +38 (057) 707-66-01

Аннотация

Ключевые слова: бесплатформенные астроинерциальные системы ориентации космических аппаратов, волоконно-оптические гироскопы

Представлено описание принципов построения бесплатформенного астроинерциального блока (БАИБ), создаваемого в НПП «Хартрон-Аркос» на базе волоконно-оптических гироскопов (ВОГ) и астроизмерительного блока (АБ). Приводится методология разработки математической модели температурного дрейфа ВОГ, исследования его чувствительности к влиянию внешнего магнитного поля, концепция наземных испытаний АБ, технология и основные результаты испытаний БАИБ.

Введение

Постоянное возрастание требований к качеству современных систем управления подвижных объектов, в частности, ракет-носителей и космических аппаратов, заставляет разработчиков командных измерительных приборов постоянно совершенствовать их технические характеристики. Наиболее важной характеристикой командных приборов является точность, а с развитием спроса на малые космические аппараты особое внимание стали уделять энергомассогабаритным показателям. В настоящее время используются приборы, функционирование которых основано на различных физических принципах. В качестве примера можно привести волоконно-оптические датчики вращения, микромеханические гироскопы и уже ставшие довольно популярными, широкоугольные астроизмерительные системы. Вместе с тем, появление командных приборов нового типа требует совершенствования технологии их испытаний и методологии определения технических характеристик, разработки математических моделей [1, 2].

В настоящей работе представлено описание технологии и результатов испытаний перспективного бесплатформенного астроинерциального блока, создаваемого в НПП «Хартрон-Аркос» на базе волоконно-оптических гироскопов типа ОИУС 501 (разработка ООО НПК «Оптолинк», Зеленоград) и астроизмерительного блока (разработка КП СПС «Арсенал», г. Киев, при участии НПП «Хартрон-Аркос»). БАИБ предназначен для определения проекций вектора абсолютной угловой скорости космического аппарата на оси приборной системы координат (ПСК), а также для определения кватерниона ориентации этой системы координат в инерциальном пространстве. БАИБ состоит из инерциального блока чувствительных элементов (БЧЭ), блока электроники (БЭ) и астроблока.

Цель работы. Основным принципом построения БАИБ является инерциальная ориентация с астрокоррекцией [3]. Четыре ВОГ являются чувствительными элементами БЧЭ, по измерениям которых вычисляются проекции угловой скорости и кватернион ориентации ПСК БАИБ, корректируемый выходными сигналами АБ. Астроблок БАИБ состоит из трех астродатчиков. Рабочая конфигурация АБ задается в зависимости от требуемой точности определения ориентации и может быть минимальной – один астродатчик, средней – два астродатчика или максимальной – три астродатчика.

Внешний вид БАИБ со снятой крышкой (без АБ) показан на рис. 1.

Поскольку БАИБ разрабатывается на базе ВОГ среднего класса точности, была поставлена задача

¹ Кандидат технических наук, генеральный конструктор, генеральный директор.

² Начальник отдела.

³ Кандидат технических наук, доцент, начальник сектора.

⁴ Кандидат технических наук, доцент.

⁵ Кандидат технических наук, доцент.

достижения более высокой точности прибора путем исследования влияния основных составляющих погрешностей ВОГ и дальнейшего их подавления аппаратным способом или алгоритмической компенсацией в математическом обеспечении БАИБ. Исследования проводились по экспериментальным данным испытаний, целью которых являлись следующие вопросы:

 отработка методик, математического обеспечения и отладки аппаратной части рабочего места для испытаний ВОГ;

- определение систематической составляющей смещения нулевого сигнала ВОГ в зависимости от температуры;

- определение влияния внешнего магнитного поля на показания ВОГ;

- разработка математической модели измерений ВОГ и проверки ее на адекватность;

- отработка методологии наземных испытаний АБ.

Рис. 1. Внешний вид БАИБ

Построение математической модели температурного дрейфа ВОГ. Как известно, температура является одним из существенных факторов, влияющих на точность ВОГ [2, 4]. Поэтому первой задачей в повышении точности ВОГ являлась задача определения составляющей смещения нулевого сигнала ВОГ в зависимости от температуры, т.е. построения математической модели температурного дрейфа ВОГ.

Испытания по определению зависимости характеристик ВОГ от температуры проводились в климатической камере MC-71 (температурный диапазон от -80°C до +105°C, объем 400×400×400 мм). Измерялся нулевой сигнал ВОГ при различных температурах в диапазоне рабочих температур (+10°C ... +30°C). Каждое измерение представляет собой сигнал датчика, осредненный на оптимальном времени осреднения в установившемся тепловом режиме при заданной температуре. Полученные значения аппроксимировались методом наименьших квадратов в пространстве центрированных и нормированных безразмерных факторов $Z_k=Z_k(t)$ (k=1, 2) моделью следующей структуры:

$$Y = K_{00} + K_{10}Z_1 + K_{01}Z_2 + K_{11}Z_1Z_2 + K_{20}Z_1^2 + K_{02}Z_2^2 + K_{12}Z_1Z_2^2 + K_{21}Z_1^2Z_2 + K_{30}Z_1^3 + K_{03}Z_2^3, \quad (1)$$

где K_{ii} (*i*, *j*=0, 1, 2, 3) – искомые по результатам эксперимента коэффициенты (параметры) модели;

$$Z_{k}(t) = \frac{X_{k}(t) - X_{kr}}{X_{k \max} - X_{kr}}; \qquad (k=1, 2);$$

 $X_k(t)$ – текущее значение *k*-го фактора; X_{kr} – среднее (рабочее) значение *k*-го фактора (основной уровень фактора); X_{kmax} – максимальное значение *k*-го фактора.

Для первого фактора (температуры *T*) принято: X_{1r} =20°С, X_{1max} =30°С; для второго фактора (градиента температуры *G*) – X_{2r} =0°С/мин, X_{2max} =0,25°С/мин.

После проверки статистической значимости вычисленных коэффициентов K_{ij} , оценки адекватности и точности модели при определении угловой скорости и углового положения в математической модели (1) были оставлены коэффициенты: $K_{00}, K_{10}, K_{01}, K_{03}$. На основании принятой модели и знании эталонных измерений (проекция угловой скорости вращения Земли на ось чувствительности ВОГ на широте г. Харькова) построена математическая модель температурного дрейфа ВОГ.

На рис. 2 представлены графики ошибок δω оценки угловой скорости без компенсации температурного дрейфа (1) и с компенсацией (2), на рис. 3 – графики ошибок δγ оценки углового положения без компенсации (1) и с компенсацией (2) в двух запусках длительностью по 700 мин каждый. При построении модели дрейфа оба запуска объединялись в один длительностью 1400 мин.

Рис. 2. Графики ошибок оценки угловой скорости

Рис. 3. Графики ошибок оценки углового положения

Исследование влияния внешнего магнитного поля. Определение влияния внешнего магнитного поля на показания ВОГ выполнялось по оригинальной методике, основанной на различной магнитной чувствительности ВОГ (канала X и Y), входящих в инерциальный блок, и проявляющейся при различной ориентации блока в магнитном поле Земли. Изменение ориентации осуществлялось поворотом БЧЭ вокруг вертикальной оси с дискретностью по азимутальному углу ψ_i (*i*=1-25) на 15°. Измерения ВОГ проводились в 25 фиксированных положениях БЧЭ при изменении угла ψ_i от 0° до 360°.

Модель осредненных измерений ВОГХ и ВОГҮ представлялась в виде [5]:

$$\Omega_{Xi} = \Omega_{\varphi} \cdot \cos(\psi_i + \Delta \psi_0) + \delta \tilde{\Omega}_X + A_c \cdot \cos(\psi_i + \Delta \psi_0) + A_s \sin(\psi_i + \Delta \psi_0), \qquad (2)$$

$$\Omega_{Yi} = \Omega_{\varphi} \cdot \sin(\psi_i + \Delta \psi_0) + \delta \hat{\Omega}_Y + C_c \cdot \cos(\psi_i + \Delta \psi_0) + C_s \cdot \sin(\psi_i + \Delta \psi_0), \qquad (3)$$

где

$$A_{c} = \mu_{XX} \cdot B_{N} - \mu_{XY} \cdot B_{E}; A_{s} = \mu_{XX} \cdot B_{E} + \mu_{XY} \cdot B_{N}; \delta\Omega_{X} = \delta\Omega_{X} + \mu_{XZ} \cdot B_{H};$$

$$C_c = -\mu_{YY} \cdot B_E + \mu_{YX} \cdot B_N; \ C_s = \mu_{YY} \cdot B_N + \mu_{YX} \cdot B_E; \ \delta \hat{\Omega}_Y = \delta \Omega_Y + \mu_{YZ} \cdot B_H;$$

 $\Omega_{\phi} = \Omega_E \cdot \cos \phi_0$ – проекция угловой скорости вращения Земли ($\Omega_E = 15,04^{\circ}/4$) на ось наклонноповоротного устройства (НПУ), направленную на Север на широте г. Харькова ($\phi_0 = 50.05^{\circ}$ с.ш.);

 ψ_i (*i*=1-24) – программное значение азимута оси чувствительности ВОГХ;

 $\Delta \Psi_0$ – ошибка начальной выставки БЧЭ;

 $\delta\Omega_{x}, \delta\Omega_{y}$ – постоянный систематический дрейф ВОГХ, ВОГҮ;

 B_N, B_E, B_H – проекции вектора магнитной индукции на северную, восточную и вертикальную оси местной географической системы координат соответственно;

 μ_{jX} , μ_{jY} , μ_{jZ} (j = x, y) – коэффициенты магнитной чувствительности ВОГЈ (J=X, Y) к проекциям вектора магнитной индукции на собственную ось чувствительности и перпендикулярно к ней.

В результате обработки данных испытаний на основе метода наименьших квадратов строились аппроксимирующие функции $f_j(\psi)$ (*j*=*x*, *y*) для ошибок измерений ВОГХ и ВОГҮ, которые с учетом малости ошибки $\Delta \Psi_0$ можно представить как

$$f_x(\psi) = \delta \hat{\Omega}_x + S_x \sin(\psi + \Delta \varphi_x), \quad f_y(\psi) = \delta \hat{\Omega}_y + S_y \cos(\psi + \Delta \varphi_y), \quad (4)$$

где $\delta \hat{\Omega}_{j}$ (*j*=*x*, *y*) – оценка постоянного систематического смещения нулевого сигнала ВОГЈ; S_{j} (*j*=*x*, *y*) – амплитуда периодической составляющей ошибки измерений ВОГЈ; Ψ – азимутальный угол ВОГХ; $\Delta \phi_{j}$ (*j*=*x*, *y*) – фаза периодической составляющей ошибки измерений ВОГЈ.

Амплитуда S_j и фаза $\Delta \varphi_j$ являются нелинейными функциями магнитной чувствительности ВОГ, ошибки начальной выставки БЧЭ по азимуту $\Delta \psi_0$ и проекции Ω_{φ} вектора угловой скорости вращения Земли. При пренебрежимо малой магнитной чувствительности ВОГ имеет место равенство $S_x = -S_y$. Поэтому отличие амплитуд S_j периодических составляющих функций $f_x(\psi)$ и $f_y(\psi)$ принималось за меру магнитной чувствительности ВОГ.

На рис. 4 представлены графики разностей δf_j (*j*=*x*, *y*) аппроксимирующих функций для ошибок измерений, полученных при высокой и низкой магнитной чувствительности, которая обеспечивалась дополнительным экранированием БЧЭ, для ВОГХ и ВОГҮ.

Рис. 4. Графики разностей аппроксимирующих функций ошибок измерений

Методология наземных испытаний АБ. Астроблок БАИБ предназначен для начальной выставки инерциального блока БАИБ и последующей его коррекции. Каждый из трех астродатчиков представляет собой автономный прибор, принцип действия которого основан на регистрации видимого звездного участка на ПЗС-матрице и последующего анализа полученного изображения. Блок электроники прибора выполняет ряд задач по анализу входной информации:

получение данных с ПЗС-матрицы и построение изображения участка звездного неба;

- фильтрация полученного изображения;
- выделение и локализация объектов изображения;
- селекция помеховых источников и дефектных пикселей.
- В спецвычислителе БАИБ решаются задачи:
- управление АБ как пассивным абонентом;
- распознавание звезд с использованием звездного каталога;
- дополнительная селекция помеховых источников;

- определение параметров ориентации (кватернионов) на основании координат распознанных звезд из каталога и их координат, зафиксированных АБ.

Концепция испытаний астроизмерительного блока на стенде физического моделирования НПП «Хартрон-Аркос» заключается в имитации звездного неба при помощи шаблонов с отверстиями, имитирующими реальный участок звездного неба. Разработано математическое обеспечение для формирования эталонных кватернионов ориентации, соответствующих видимым астроблоком картинам звездного неба. Методика испытаний состоит в сравнении эталонных кватернионов ориентации с фактическими, вычисляемыми в спецвычислителе БАИБ при наблюдении АБ имитируемого участка звездного неба.

Заключение. Разработана полиномиальная третьей степени с постоянными коэффициентами математическая модель зависимости смещения нулевого сигнала ВОГ от температуры и ее градиента. Применение данной модели для алгоритмической компенсации температурного дрейфа ВОГ среднего класса точности типа ОИУС 501, функционирующего в условиях, близких к условиям испытаний, позволили уменьшить систематическое температурное смещение нуля в запуске с ±1,0°/ч до ±0,05°/ч.

По разработанной методике выявлено существенное влияние внешнего магнитного поля на точность ВОГ данного типа. Дополнительная ошибка составляет около $\pm 0,15^{\circ}/4$. Поэтому требуется принятие специальных мер, связанных с экранированием ВОГ.

Разработана методология наземных испытаний астроблока БАИБ.

Литература

- Мешковский И.К., Стригалев В.Е., Дейнека Г.Б. и др. Трехосный волоконно-оптический гироскоп. Результаты разработки // XVIII Санкт-Петербургская межд. конф. по интегрированным навигационным системам. Сб. материалов. – СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 2011. – С. 8-14.
- Кутовой В.М., Маслова О.И., Перепелкина С.Ю. и др. Исследование характеристик бесплатформенного инерциального блока на базе волоконно-оптических гироскопов в процессе наземнй отработки // XVII Санкт-Петербургская межд. конф. по интегрированным навигационным системам. Сб. материалов. – СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 2011. – С. 142-151.
- 3. **Анучин О.Н., Емельянцев Г.И.** Бесплатформенные инерциальные системы навигации и ориентации (БИНС и БИСО). Учебное пособие. СПб.: ИТМО, 1995. 110 с.
- 4. Шереметьев А.Г. Волоконный оптический гироскоп. М.: Радио и связь, 1987. 152 с.
- Златкин Ю.М., Олейник С.В., Кузнецов Ю.А. и др. Результаты исследования влияния магнитного поля Земли на погрешность измерений волоконно-оптического гироскопа // Научно-техн. сб. «Космическая техника. Ракетное вооружение», посвященный 100-летию со дня рождения академика М.К. Янгеля. – Днепропетровск: ГП «КБ «Южное», 2011. – С. 6-11.